Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Aqua\{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato$\left.\kappa^{4} O, N, N^{\prime}, O^{\prime}\right\}$ cobalt(II)

Gang-Biao Jiang, ${ }^{\text {a,b }}$ Shu-Hua Zhang ${ }^{\text {a }}$ and Ming-Hua Zeng ${ }^{\text {a* }}$
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ${ }^{\text {b }}$ College of Resources and Environment, South China Agriculture University, Guangzhou 510642, People's Republic of China Correspondence e-mail: zmh@mailbox.gxnu.edu.cn
Received 8 August 2007; accepted 9 August 2007
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in main residue; R factor $=0.037 ; w R$ factor $=0.101$; data-to-parameter ratio $=12.6$.

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the $\mathrm{Co}^{\text {II }}$ atom is coordinated in a distorted square-pyramidal geometry defined by two O atoms and two N atoms in the basal positions, and one water molecule in the apical position. The $\mathrm{Co}^{\mathrm{II}}$ atom and water O atom lie on a symmetry plane defining C_{s} molecular symmetry. In the crystal structure, the ethylenediamine group is disordered over two positions with equal occupancy. Molecules are linked into chains via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For related literature, see: Guo et al. (2002).

Experimental

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=403.29$
Orthorhombic, Pnma
$a=8.9827$ (6) \AA
$b=24.8632$ (16) \AA
$c=7.5784(5) \AA$
$V=1692.55(19) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.05 \mathrm{~mm}^{-1}$
$T=173$ (2) K
$0.49 \times 0.46 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.628, T_{\text {max }}=0.826$
6807 measured reflections 1694 independent reflections 1389 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.76 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{Co} 1-\mathrm{O} 1$	$1.979(2)$	$\mathrm{Co} 1-\mathrm{O} 1 W$	$2.066(3)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.036(3)$		
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	$91.99(12)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1 W$	$106.80(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$89.55(10)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1 W$	$98.41(13)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$77.4(2)$		

Symmetry code: (i) $x,-y+\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.848(10)$	$2.100(18)$	$2.830(3)$	$144.0(17)$
O1 $W-\mathrm{H} 1 W \cdots \mathrm{O}^{\mathrm{ii}}$	$0.848(10)$	$2.242(10)$	$2.962(2)$	$142.7(19)$
Symmetry code: (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+\frac{5}{2}$				

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

We acknowledge financial support by the NSFC (Nos. 30460153 and 20561001) and the Natural Science Foundation of Guangxi Province (No. 0447019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2129).

References

Bruker (2001). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Guo, Y.-M., Du, M. \& Bu, X.-H. (2002). J. Mol. Struct. 610, 27-31.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Aqua\{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato$\left.\kappa^{4} O, N, N^{\prime}, O^{\prime}\right\} \operatorname{cobalt}($ II $)$

G.-B. Jiang, S.-H. Zhang and M.-H. Zeng

Comment

Using $\mathrm{H}_{2} \mathrm{~L}$ [where $\mathrm{H}_{2} \mathrm{~L}$ is N, N^{\prime}-ethylene-bis(3-methoxysalicylaldiminato)], we have hydrothermally prepared the title compound, (I), namely $\mathrm{Co}(L)\left(\mathrm{H}_{2} \mathrm{O}\right)$. As an example of penta coordinated $\mathrm{Co}(\mathrm{II})$ complexes there are series of complexes with 1,4-diazacycloheptane (DACH) functionalized by additional imidazole or pyridine donor pendants [CoL 1 Cl$](\mathrm{ClO} 4) \cdot \mathrm{H} 2 \mathrm{O}$, $[\mathrm{CoL} 2 \mathrm{Cl}](\mathrm{ClO} 4)$ and $[\mathrm{CoL} 3 \mathrm{Cl}](\mathrm{ClO} 4) \cdot \mathrm{CH} 3 \mathrm{OH}$, where $\mathrm{L} 1=1,4$-bis(imidazole-4-ylmethyl)-DACH, L2=1,4-bis(N-1-methyl-imidazol-2-ylmethyl)-DACH and L3=1,4-bis(pyridyl-2-ylmethyl)-DACH that were synthesized and characterized (Guo et al., 2002). In the present structure $C o(I I)$ atom is coordinated by two phenolato oxygen atoms and two imine nitrogen atoms from L^{2-} ligand, and one water molecule to furnish a distorted square pyramidal coordination geometry (Fig. 1, Table 1). The O atom of water molecule is at the apical position of square pyramid and the other two O atoms and two N atoms are at the base of square pyramid. The $\mathrm{Co}^{\text {II }}$ and O atom of water molecule lie on a symmetry plane. The two C atoms of ethylenediamine moiety are disordered over two positions with equal occupancy. The complex generates 1-D chain through hydrogen bonds between water molecule and phenolato oxygen (Table 2 and Fig. 2).

Experimental

2-Hydroxy-3-methoxy-benzaldehyde ($0.152 \mathrm{~g}, 1 \mathrm{mmol}$), ethane-1,2-diamine ($0.120 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{Co}^{\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.290}$ $\mathrm{g}, 1 \mathrm{mmol}$) were dissolved in a mixture solution (8 ml of methanol: acetonitrile $=1: 1(\mathrm{v} / \mathrm{v})$). The solution was sealed in a 15 ml Teflon-lined stainless steel bomb and held at 353 K for 5 d . Then, a bomb was cooled to room temperature and red block crystals were filtered off, washed with methanol and dried at room temperature. Elemental analysis, calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CoN}_{2} \mathrm{O}_{5}$: C 62.78, H 5.85, N 8.13; found (\%): C 62.56, H 5.92, N 8.11.

Refinement

There is positional disorder of C9 and C9 ${ }^{1 \mathrm{i}}$ over two equally occupied sites. It was assumed that the ethylenediamine moiety has two possible conformations, namely N1-C9(H9A/H9B)-C9 $9^{i}\left(H 9 C / H 9 D^{i}\right)-N 1^{i}{ }^{i}$ and $N 1^{\prime}-C 9^{\prime}(H 9 C / H 9 D)-C 9^{i}\left(H 9 A^{i} /\right.$ $\mathrm{H} 9 \mathrm{~B}^{\mathrm{i}}{ }^{\mathrm{i}}-\mathrm{N} 1^{\mathrm{i}}$ [symmetry code: (i) $\left.x, 1 / 2-y, z\right]$. H atoms of the water molecule were located in a difference Fourier map, but their distances and angles were restrained to literature values with $\mathrm{U}(\mathrm{H})=1.5$ times $U_{\text {eq }}(\mathrm{O})$. All other H atoms were positioned geometrically and refined as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.95-0.98 \AA$ and $\mathrm{U}(\mathrm{H})=1.2-1.5$ times $U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of (I) with atom labels and the 50% probability displacement ellipsoids for non-H atoms. One of the disorder part is shown by a dashed line. The molecular symmetry C_{S} is generated by symmetry code: (i) $x, 1 / 2-y, z$.

Fig. 2. The packing of (I), showing two chains of molecules connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

Aqua\{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- $\left.\boldsymbol{\kappa}^{4} O, N, N^{\prime}, O^{\prime}\right\}$ cobalt(II)

Crystal data

$$
\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}_{1}\right)\right]
$$

$M_{r}=403.29$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=8.9827$ (6) \AA
$b=24.8632(16) \AA$
$c=7.5784(5) \AA$
$V=1692.55(19) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.628, T_{\text {max }}=0.826$
6807 measured reflections
$F_{000}=836$
$D_{\mathrm{x}}=1.583 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 3183 reflections
$\theta=2.8-28.1^{\circ}$
$\mu=1.05 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, red
$0.49 \times 0.46 \times 0.19 \mathrm{~mm}$

1694 independent reflections
1389 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-10 \rightarrow 11$
$k=-30 \rightarrow 20$
$l=-9 \rightarrow 7$

Refinement

Refinement on F^{2}
Secondary atom site location: difference Fourier map

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.101$
$S=1.07$
1694 reflections
134 parameters
4 restraints

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0463 P)^{2}+2.1284 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.76$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.39$ e \AA^{-3}
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{2} / U_{\text {eq }}$	Occ. (<1)
Co1	$0.05985(6)$	0.2500	$1.06224(7)$	$0.0225(2)$	
C1	$0.2009(3)$	$0.35745(12)$	$1.0129(4)$	$0.0270(6)$	
C2	$0.3278(4)$	$0.39125(13)$	$1.0321(4)$	$0.0330(7)$	
C3	$0.3227(4)$	$0.44530(14)$	$0.9907(6)$	$0.0467(9)$	
H3	0.4080	0.4672	1.0091	0.056^{*}	
C4	$0.1929(5)$	$0.46784(15)$	$0.9220(6)$	$0.0554(11)$	
H4	0.1895	0.5050	0.8934	0.066^{*}	
C5	$0.0714(4)$	$0.43626(15)$	$0.8964(6)$	$0.0500(10)$	
H5	-0.0162	0.4517	0.8478	0.060^{*}	
C6	$0.0718(3)$	$0.38107(13)$	$0.9399(4)$	$0.0344(7)$	
C7	$0.5866(4)$	$0.39539(17)$	$1.1006(6)$	$0.0544(11)$	
H7A	0.6086	0.4095	0.9827	0.082^{*}	
H7B	0.6679	0.3719	1.1390	0.082^{*}	
H7C	0.5763	0.4254	1.1837	0.082^{*}	
C8	$-0.0616(4)$	$0.35127(16)$	$0.9037(5)$	$0.0502(11)$	
H8	-0.1407	0.3701	0.8480	0.060^{*}	
C9	$-0.2007(7)$	$0.2696(3)$	$0.8386(10)$	$0.0364(16)$	0.50
H9A	-0.1631	0.2612	0.7233	0.044^{*}	0.50
H9B	-0.2889	0.2910	0.8247	0.044^{*}	0.50
C9'	$-0.2370(6)$	$0.2830(3)$	$0.9378(10)$	$0.0315(14)$	0.50

H9C	-0.3015	0.3063	0.8717	0.038^{*}	0.50
H9D	-0.2767	0.2768	1.0537	0.038^{*}	0.50
N1	$-0.0838(3)$	$0.30121(14)$	$0.9399(5)$	$0.0623(11)$	0.50
N1'	$-0.0838(3)$	$0.30121(14)$	$0.9399(5)$	$0.0623(11)$	0.50
O1	$0.2129(2)$	$0.30725(8)$	$1.0632(3)$	$0.0276(5)$	
O2	$0.4510(2)$	$0.36547(10)$	$1.0954(3)$	$0.0431(6)$	
O1W	$-0.0369(3)$	0.2500	$1.3095(4)$	$0.0244(6)$	
H1W	$-0.082(3)$	$0.2221(2)$	$1.346(4)$	0.037^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0178(3)$	$0.0214(3)$	$0.0284(3)$	0.000	$-0.0003(2)$	0.000
C1	$0.0252(15)$	$0.0241(15)$	$0.0317(15)$	$-0.0012(12)$	$0.0006(12)$	$0.0019(12)$
C2	$0.0308(17)$	$0.0279(16)$	$0.0402(18)$	$-0.0021(14)$	$-0.0052(14)$	$0.0066(14)$
C3	$0.044(2)$	$0.0273(18)$	$0.069(2)$	$-0.0093(16)$	$-0.0113(19)$	$0.0082(17)$
C4	$0.054(2)$	$0.0252(18)$	$0.087(3)$	$-0.0007(17)$	$-0.008(2)$	$0.020(2)$
C5	$0.039(2)$	$0.0367(19)$	$0.074(3)$	$0.0063(16)$	$-0.0083(19)$	$0.0234(19)$
C6	$0.0291(16)$	$0.0326(17)$	$0.0416(18)$	$0.0003(14)$	$-0.0011(15)$	$0.0117(14)$
C7	$0.036(2)$	$0.058(2)$	$0.070(3)$	$-0.0231(18)$	$-0.0205(18)$	$0.030(2)$
C8	$0.0273(17)$	$0.052(2)$	$0.072(3)$	$-0.0039(16)$	$-0.0160(17)$	$0.037(2)$
C9	$0.024(3)$	$0.040(4)$	$0.045(4)$	$0.006(3)$	$-0.008(3)$	$0.010(3)$
C9'	$0.016(3)$	$0.038(4)$	$0.040(4)$	$0.006(3)$	$0.003(3)$	$0.006(3)$
N1	$0.0272(16)$	$0.060(2)$	$0.100(3)$	$-0.0151(15)$	$-0.0277(17)$	$0.051(2)$
N1'	$0.0272(16)$	$0.060(2)$	$0.100(3)$	$-0.0151(15)$	$-0.0277(17)$	$0.051(2)$
O1	$0.0208(10)$	$0.0209(10)$	$0.0412(12)$	$-0.0009(8)$	$-0.0020(9)$	$0.0054(9)$
O2	$0.0276(12)$	$0.0335(12)$	$0.0682(17)$	$-0.0103(10)$	$-0.0141(11)$	$0.0174(12)$
O1W	$0.0225(14)$	$0.0217(14)$	$0.0291(15)$	0.000	$0.0029(12)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.979(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{Co} 1-\mathrm{O} 1$	$1.979(2)$	$\mathrm{C} 6-\mathrm{C} 8$	$1.435(5)$
$\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.036(3)$	$\mathrm{C} 7-\mathrm{O} 2$	$1.427(4)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.036(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9800
$\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~W}$	$2.066(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9800
$\mathrm{C} 1-\mathrm{O} 1$	$1.309(3)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9800
$\mathrm{C} 1-\mathrm{C} 6$	$1.413(4)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.290(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.424(4)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{C} 2-\mathrm{O} 2$	$1.366(4)$	$\mathrm{C} 9-\mathrm{N} 1$	$1.519(6)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.381(4)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9601
$\mathrm{C} 3-\mathrm{C} 4$	$1.394(5)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9599
$\mathrm{C} 4-\mathrm{C} 5$	$1.359(6)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{D}$	0.9600
$\mathrm{C} 4-\mathrm{H} 4$	0.9500	$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$	$0.848(10)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.411(5)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	$91.99(12)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	120.2
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$89.55(10)$		$121.8(3)$

sup-4

supplementary materials

$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$153.09(15)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$153.09(15)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$89.55(10)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	$77.4(2)$
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~W}$	$106.80(8)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~W}$	$106.80(8)$
$\mathrm{N} 1 \mathrm{i}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~W}$	$98.41(13)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~W}$	$98.41(13)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$125.3(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$117.8(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$116.9(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$124.3(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$114.1(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.7(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.2(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.5(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.2

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.1
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.1
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.9(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8$	$117.1(3)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 8$	$123.1(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 6$	$125.9(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{H} 8$	117.0
$\mathrm{C} 6-\mathrm{C} 8-\mathrm{H} 8$	117.0
$\mathrm{~N} 1-\mathrm{C} 9-\mathrm{H} 9 A$	109.3
$\mathrm{~N} 1-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.8
$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	108.1
$\mathrm{H} 9 \mathrm{C}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{D}$	110.5
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 9$	$119.9(4)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Co} 1$	$127.0(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{Co} 1$	$110.2(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Co} 1$	$128.85(18)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 7$	$117.2(3)$
$\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$	$119.5(17)$

Symmetry codes: (i) $x,-y+1 / 2, z$.

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)
$D-\mathrm{H} \cdots A$
O1W—H1W $\cdots \mathrm{O}^{\text {ii }}$
O1W—H1W $\cdots 2^{\text {ii }}$
Symmetry codes: (ii) $x-1 / 2,-y+1 / 2,-z+5 / 2$.

$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$0.848(10)$	$2.100(18)$	$2.830(3)$	$144.0(17)$
$0.848(10)$	$2.242(10)$	$2.962(2)$	$142.7(19)$

Symmetry codes: (ii) $x-1 / 2,-y+1 / 2,-z+5 / 2$.

supplementary materials

Fig. 1

Fig. 2

